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Ian McCulloch

Originally from Tasmania, Australia

PhD at Australian National University, Canberra (2002)
Europe (Netherlands, Gemany) until 2007
University of Queensland, 2007 - 2023
Now at National Tsing Hua University, Hsinchu
NTHU Physics Department, room 715
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DMRG Introduction

See code at https://mptoolkit.qusim.net/Tutorials/SimpleDMRG
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Matrix Product States & Operators

If we look at the structure of the DMRG code, it can be written in a more expressive way using
Matrix Product States and Matrix Product Operators
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Merge Kronecker product and truncation
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Orthogonality Relations
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MPS – independent of DMRG construction
Method 1: quantize a classical state

Start from a classical (product) state

|ψ⟩ =
��s1� ��s2� ��s3� ��s4� · · ·

Each
��si
�

is a classical vector, with real (or c-number) coefficients in some basis

��si� = ax
i |x⟩+ ay

i |y⟩+ az
i |z⟩

Turn our (commuting) numeric coefficients into a matrix

��si�
jk = Ax

jk|x⟩+ Ay
jk|y⟩+ Az

jk|z⟩

We can recover an amplitude at the end by taking the trace, or arranging that the boundary
matrices are 1 × D and D × 1.

|ψ⟩ = Tr
X

si

As1 As2 As3 As4 · · ·
��s1� ��s2� ��s3� ��s4� · · ·
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Method 2: quantum finite-state machines
What is a Matrix Product State?

Another way to visualizing them (from Greg Crosswhite)

A finite-state machine is a
model of a system that can
transition between a finite
number of states.

Ian McCulloch (UQ) MPO August 28, 2023 9 / 26



A classical finite-state machine is always in one discrete state.

In a quantum finite-state machine, we choose every possible transition with some probability
amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

|ψ⟩ =
�

|↑⟩
|↓⟩
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Matrix Product States
This quantum finite-state machine has a transition matrix associated with it

W-state

|ψ⟩ = 1√
N
(|↓↑↑↑ . . .⟩+ |↑↓↑↑ . . .⟩+ |↑↑↓↑ . . .⟩+ . . .)

A =

�
|↑⟩ |↓⟩
0 |↑⟩

�

Practically all prototype wavefunctions studied in quantum information have a low-dimensional
MPS representation

GHZ state – long-range entangled, S = ln 2

|ψ⟩ = 1√
2
(|↑↑↑ . . .⟩+ |↓↓↓ . . .⟩)

A =

�
|↑⟩ 0
0 |↓⟩

�

AKLT state

A =

� p
1/3 |0⟩ −

p
2/3 |+⟩p

2/3 |−⟩ −
p

1/3 |0⟩

�
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Spin 1 Chains

The AKLT Model: A prototypical Resonating Valence Bond groundstate

H =
X

<ij>

h
S⃗i · S⃗j + β(⃗Si · S⃗j)

2
i

β = 0: usual Heisenberg spin chain
Haldane: unlike half-integer spin chains, integer spin chains have a gap

string order parameter: Sz
0 exp

"
iπ

n−1X

m=1

Sz
m

#
Sz

n → constant

free Z2 parameter at the boundary: effective spin-1/2 edge states

β = 1/3: exactly solvable groundstate
Matrix product realization:

A =

� p
1/3 |0⟩ −

p
2/3 |+⟩p

2/3 |−⟩ −
p

1/3 |0⟩

�
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Dont́ hard-code the Hamiltonian, use an MPO
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MPO as a tensor
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Matrix Product Operators
IPM J. Stat. Mech. P10014 (2007), arXiv:0804.2509

At each iteration we have a set of block operators, acting on the m-dimensional auxiliary space
It is natural to use a Matrix Product approach to constructing the block operators used in
DMRG

Ising model H =
X

<i,j>

Sz
i S

z
j + λ

X

i

Sx
i , adding a site to the block:

(identity operator) I → I ⊗ Ilocal
(z-spin acting on right-most site) Sz → I ⊗ Sz

local
(block Hamiltonian) H → λI ⊗ Sx

local + Sz ⊗ Sz
local + H ⊗ Ilocal

In matrix form:

(I Sz H)
′

| {z }
new block operators

= (I Sz H)| {z }
old block operators

×




I Sz λSx

Sz

I




| {z }
local
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Matrix Product Operators
This form can represent many operators

fermionic c†k=0: Wc†k=0
=

�
P c†

I

�
, P = (−1)N , J-W string

finite momentum b†k : Wb†k
=

�
eik b†

I

�

Advantages of the MPO representation: arithmetic operations!

H1 + H2 direct sum of the MPO representations
H1 × H2 direct product of the MPO representations

also derivatives, etc
This preserves the lower triangular form.
In the thermodynamic limit:

⟨A⟩L = polynomial function of L

Examples:
Energy: ⟨H⟩L = L ϵ

Hamiltonian block operator matrix elements to restart a calculation
Single-mode approximation: ⟨S−

k HS+
k ⟩L/⟨S−

k S+
k ⟩L
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