Matrix Product Operators

Ian McCulloch

National Tsing Hua University
University of Queensland
August 28, 2023

THE UNIVERSITY Of Queensland

A USTRALIA

NATIONAL TSING HUA UNIVERSITY

Outline

(9) Who Am I?
(2) Introduction to DMRG
(3) Matrix Product States
(4) Matrix Product Operators
(5) Expectation Values
6) Translationally Invariant States - Correlation Functions \checkmark

Ian McCulloch

- Originally from Tasmania, Australia

- PhD at Australian National University, Canberra (2002)
- Europe (Netherlands, Gemany) until 2007
- University of Queensland, 2007-2023
- Now at National Tsing Hua University, Hsinchu
- NTHU Physics Department, room 715
- Email mailto:ian@mx.nthu.edu.tw (or ian@phys.nthu.edu.tw??)
- MPS codes - see https://mptoolkit.qusim.net

DMRG Introduction

$$
\begin{aligned}
& \quad|\psi\rangle=\psi_{i j}|i\rangle \\
&L j\rangle \\
& P
\end{aligned} \vec{S}_{S_{i}} \cdot \dot{S}_{j}=S_{i}^{t} S_{j}^{2}+\frac{1}{2}\left(S_{i}^{+} S_{j}+S_{i} S_{j}^{+}\right)
$$

See code at https://mptoolkit.qusim.net/Tutorials/SimpleDMRG

$$
\begin{aligned}
& H=\bar{j} \sum_{i=1} \vec{s}_{i} \cdot \vec{s}_{j}+h \sum_{i} S^{2}
\end{aligned}
$$

Matrix Product States \& Operators

If we look at the structure of the DMRG code, it can be written in a more expressive way using Matrix Product States and Matrix Product Operators

Merge Kronecker product and truncation

Orthogonality Relations
assume $1: 7$ is orthogonal. (and normalized)
Wont now basis $1 ; 7$ is also orthonormal.

$$
\begin{aligned}
& \text { dada-... }\left\langle j^{\prime} \mid j\right\rangle=\delta_{i j}
\end{aligned}
$$

MPS - independent of DMRG construction

Method 1: quantize a classical state
Start from a classical (product) state

$$
|\psi\rangle=\left|s^{1}\right\rangle\left|s^{2}\right\rangle\left|s^{3}\right\rangle\left|s^{4}\right\rangle \cdots
$$

$$
A_{i j i l l}^{s}
$$

Each $\left|s^{i}\right\rangle$ is a classical vector, with real (or c-number) coefficients in some basis

$$
\left|s^{i}\right\rangle=\underline{a_{i}^{x}}|x\rangle+\underline{a_{i}^{y}}|y\rangle+\underline{a}_{-}^{z}|z\rangle
$$

Turn our (commuting) numeric coefficients into a matrix

$$
\left|s^{i}\right\rangle_{j k}=A_{j k}^{x}|x\rangle+A_{j k}^{y}|y\rangle+A_{j k}^{z}|z\rangle
$$

We can recover an amplitude at the end by taking the trace, or arranging that the boundary matrices are $1 \times D$ and $D \times 1$.

$$
|\psi\rangle=\operatorname{Tr} \sum_{s_{i}} A^{s_{1}} A^{s_{2}} A^{s_{3}} A^{s_{4}} \cdots\left|s^{1}\right\rangle\left|s^{2}\right\rangle\left|s^{3}\right\rangle\left|s^{4}\right\rangle \cdots
$$

Method 2: quantum finite-state machines

What is a Matrix Product State?

- Another way to visualizing them (from Greg Crosswhite)

A finite-state machine is a model of a system that can transition between a finite number of states.

A classical finite－state machine is always in one discrete state． \mathcal{F}
In a quantum finite－state machine，we choose every possible transition with some probability amplitude

个う个つ $+10 \uparrow \downarrow 7$

$$
\begin{aligned}
& \psi\rangle=\left\{\begin{array}{l}
|\uparrow\rangle \\
|\downarrow\rangle
\end{array}\right. \\
& \text { 11人つ } \\
& |\downarrow \uparrow フ+1 \wedge \downarrow\rangle \\
& \text { W-state }
\end{aligned}
$$

A classical finite-state machine is always in one discrete state.
In a quantum finite-state machine, we choose every possible transition with some probability amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

$$
|\psi\rangle=\left\{\begin{array}{l}
|\uparrow \uparrow\rangle \\
|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle
\end{array}\right.
$$

A classical finite-state machine is always in one discrete state.
In a quantum finite-state machine, we choose every possible transition with some probability amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

$$
|\psi\rangle=\left\{\begin{array}{l}
|\uparrow \uparrow \uparrow\rangle \\
|\downarrow \uparrow \uparrow\rangle+|\uparrow \downarrow \uparrow\rangle+|\uparrow \uparrow \downarrow\rangle
\end{array}\right.
$$

A classical finite-state machine is always in one discrete state.
In a quantum finite-state machine, we choose every possible transition with some probability amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

$$
|\psi\rangle=|\downarrow \uparrow \uparrow \uparrow\rangle+|\uparrow \downarrow \uparrow \uparrow\rangle+|\uparrow \uparrow \downarrow \uparrow\rangle+|\uparrow \uparrow \uparrow \downarrow\rangle
$$

Matrix Product States

This quantum finite-state machine has a transition matrix associated with it

- W-state

$$
A^{\downarrow \sqrt{\Downarrow}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& |\psi\rangle=\frac{1}{\sqrt{N}}(|\downarrow \uparrow \uparrow \uparrow \ldots\rangle+|\uparrow \downarrow \uparrow \uparrow \ldots\rangle+|\uparrow \uparrow \downarrow \uparrow \ldots\rangle+\ldots) \\
& A_{i j}^{S} \quad A=\left(\begin{array}{cc}
|\uparrow\rangle & |\downarrow\rangle \\
0 & |\uparrow\rangle
\end{array}\right) \quad A \quad \text { 橧 }
\end{aligned}
$$

Practically all prototype wavefunctions studied in quantum information have a low-dimensional MPS representation

- GHZ state - long-range entangled, $S=\ln 2$
- AKLT state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \uparrow \ldots\rangle+|\downarrow \downarrow \downarrow \ldots\rangle) \\
A=\left(\begin{array}{cc}
|\uparrow\rangle & 0 \\
0 & |\downarrow\rangle
\end{array}\right) \\
A=\left(\begin{array}{cc}
\sqrt{1 / 3}|0\rangle & -\sqrt{2 / 3} \\
\sqrt{2 / 3}|-\rangle & -\sqrt{1 / 3}|0\rangle
\end{array}\right)
\end{gathered}
$$

Spin 1 Chains

The AKLT Model: A prototypical Resonating Valence Bond groundstate

- $H=\sum_{<i j>}\left[\vec{S}_{i} \cdot \vec{S}_{j}+\beta\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}\right]$
- $\beta=0$: usual Heisenberg spin chain
- Haldane: unlike half-integer spin chains, integer spin chains have a gap
- string order parameter: $S_{0}^{z} \exp \left[i \pi \sum_{m=1}^{n-1} S_{m}^{z}\right] S_{n}^{z} \rightarrow$ constant
- free Z_{2} parameter at the boundary: effective spin- $1 / 2$ edge states
- $\beta=1 / 3$: exactly solvable groundstate

Matrix product realization:

- $A=\left(\begin{array}{llll}\sqrt{1 / 3} & |0\rangle & -\sqrt{2 / 3} & |+\rangle \\ \sqrt{2 / 3} & |-\rangle & -\sqrt{1 / 3} & |0\rangle\end{array}\right)$

Dont hard-code the Hamiltonian, use an MPO

$$
\begin{aligned}
& \left(\begin{array}{lllll}
\tilde{I}^{\prime} & \tilde{S}^{\prime} & r^{+} & \tilde{S}^{\prime} & \tilde{H}^{\prime}
\end{array}\right)= \\
& \left.\left(\begin{array}{llll}
\tilde{I} & S^{\tau} & \bar{S}^{+} & \tilde{S}(\hat{H}
\end{array}\right)_{0} \left\lvert\, \begin{array}{lllll}
I & s^{2} & s^{+} & s^{-} & 0 \\
0 & 0 & 0 & 0 & s^{2} \\
0 & 0 & 0 & 0 & s^{\prime} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & s^{+} \\
2 & I
\end{array}\right.\right) \\
& \text { wan matix of } \\
& \text { sx3 local operatios }
\end{aligned}
$$

MPO as a tensor

Hamiltovian operatur

Matrix Product Operators

- At each iteration we have a set of block operators, acting on the m-dimensional auxiliary space
- It is natural to use a Matrix Product approach to constructing the block operators used in DMRG
Ising model $H=\sum_{<i, j>} S_{i}^{z} S_{j}^{z}+\lambda \sum_{i} S_{i}^{x}$, adding a site to the block:
(identity operator)
(z-spin acting on right-most site) (block Hamiltonian)

$$
\begin{aligned}
I & \rightarrow I \otimes I_{\text {local }} \\
S^{z} & \rightarrow I \otimes S_{\text {local }}^{z} \\
H & \rightarrow \lambda I \otimes S_{\text {local }}^{x}+S^{z} \otimes S_{\text {local }}^{z}+H \otimes I_{\text {local }}
\end{aligned}
$$

In matrix form:

Matrix Product Operators

This form can represent many operators

- fermionic $c_{k=0}^{\dagger}$: $\quad W_{c_{k=0}^{\dagger}}=\left(\begin{array}{cc}P & c^{\dagger} \\ & I\end{array}\right) \quad, P=(-1)^{N}, \mathrm{~J}-\mathrm{W}$ string
- finite momentum $b_{k}^{\dagger}: \quad W_{b_{k}^{\dagger}}=\left(\begin{array}{cc}e^{i k} & b^{\dagger} \\ & I\end{array}\right)$

Advantages of the MPO representation: arithmetic operations!
$H_{1}+H_{2}$ direct sum of the MPO representations $H_{1} \times H_{2}$ direct product of the MPO representations

also derivatives, etc This preserves the lower triangular form. In the thermodynamic limit:

$$
\langle A\rangle_{L}=\text { polynomial function of } L
$$

Examples:

- Energy: $\langle H\rangle_{L}=L \epsilon$
- Hamiltonian block operator matrix elements to restart a calculation
- Single-mode approximation: $\left\langle S_{k}^{-} H S_{k}^{+}\right\rangle_{L} /\left\langle S_{k}^{-} S_{k}^{+}\right\rangle_{L}$

