Environment expansion for Matrix Product States

Ian McCulloch（NTHU）
Jesse Osborne（UQ）

SQAI－NCTS Workshop 2024－03－25

國立清華大業
NATIONAL TSING HUA UNIVERSITY

NSTC 國家科學及技術委員會 National Science and Technology Council

Overview

(1) Density Matrix Renormalization Group

- 2-site DMRG
- Subspace expansion (3S)
(2) Low-rank factorization via the Randomized SVD
(3) Pre-expansion and post-expansion
- Accelerating 2-site DMRG (pre-expansion)
- Accelerating subspace expansion (post-expansion)

4. Benchmark example

Introduction: DMRG

General many-body quantum state as a tensor product of d-dimensional local Hilbert spaces:

$$
\mathcal{O}(\exp N) \text { DOFs. }
$$

Compress as a matrix product state:

Good at representing locally entangled states. Accuracy controlled by D.

Density Matrix Renormalization Group

See Schollwöck, Annals of Physics 326, 96 (2011) for a review doi:10.1016/j.aop.2010.09.012

The 'classic' algorithm is 2-site DMRG: update two sites of the tensor network at once.

One DMRG step: 2 sites, $D d \times d D$ dimensional tensor

Cost of the tensor network contraction is $\mathcal{O}\left(w d^{2} D^{3}\right)$

Density Matrix Renormalization Group

See Schollwöck, Annals of Physics 326, 96 (2011) for a review doi:10.1016/j.aop.2010.09.012

The 'classic' algorithm is 2-site DMRG: update two sites of the tensor network at once.

One DMRG step: 2 sites, $D d \times d D$ dimensional tensor

Cost of the tensor network contraction is $\mathcal{O}\left(w d^{2} D^{3}\right)$
SVD to convert ψ back into MPS form:

Cost of the SVD is $\mathcal{O}\left(d^{3} D^{3}\right)$

Why not update a single site?

- Much faster $-\mathcal{O}\left(w d D^{3}\right)$ for the matrix-vector multiply

$$
|\Psi\rangle=-\quad H|\Psi\rangle=-\quad E F
$$

- SVD is $\mathcal{O}\left(d D^{3}\right)$

- Linear scaling in the local Hilbert space dimension d
- Problem: how to increase the bond dimension? (random states?)

Single-site convergence

Heisenberg spin chain example - Néel state to $D=100$

With $U(1)$ symmetry, the dimension in each symmetry sector is frozen

Single-site subspace expansion (3S)

C. Hubig, IPM, U. Schollwöck, and F. A. Wolf, Phys. Rev. B 91, 155115 (2015) doi:10.1103/PhysRevB.91.155115

- Incorporate new degrees of freedom during the truncation using the environment Hamiltonian

Cost of contraction is $\mathcal{O}\left(w d D^{3}\right)$. Cost of SVD is $\mathcal{O}\left(w d^{2} D^{3}\right)$.
Earlier method from Steven R White that uses an eigenvalue decomposition, $\mathcal{O}\left(d^{3} D^{3}\right)$ [Phys. Rev. B 72, 180403 (2005)]

3S - why does it work?

Easier to understand as a density matrix

$$
\rho^{\prime}=\sum_{w} E_{w} \rho E_{w}^{\dagger}=X X^{\dagger}=
$$

Perturb the density matrix using the block operators

- It is important to use appropriate weights
- One block operator is the identity
- The weight of the remaining components is the control parameter α
- Weight each component by the norm F_{w} matrix
- Omit the block Hamiltonian itself - don't need it
- The remaining set $\left\{E_{w}\right\}$ contains all interaction terms that are needed at the current site
- They might not appear in the projected Hamiltonian itself!

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Matrix elements are zero at the active site

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Relevant basis states at site 1 added via the mixing term

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Relevant basis states are kept throughout the sweep

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Relevant basis states are kept throughout the sweep

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Relevant basis states are kept throughout the sweep

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Now matrix elements are non-zero

Adding relevant degrees of freedom

- Long-range interactions

Example: periodic boundary conditions

Now matrix elements are non-zero

- Inhomogeneous degrees of freedom

Example: fermions coupled to bosonic degrees of freedom

$$
H=-t \sum_{<i, j>, \sigma}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { H.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}+\omega \sum_{i} b_{i}^{\dagger} b_{i}+g \sum_{i}\left(n_{i \uparrow}+n_{i \downarrow}-1\right)\left(b_{i}^{\dagger}+b_{i}\right)
$$

2 -site update cannot introduce new quantum number sectors

Low rank factorization: randomized SVD (RSVD)

N. Halko, P.-G. Martinsson, and J. A. Tropp, SIAM Rev. 53, 217 (2011) doi:10.1137/090771806

- We only want a fraction $\sim 1 / d$ of the singular vectors.
- Traditional algorithms calculate all singular values and truncate.

Low rank factorization: randomized SVD (RSVD)

N. Halko, P.-G. Martinsson, and J. A. Tropp, SIAM Rev. 53, 217 (2011) doi:10.1137/090771806

- We only want a fraction $\sim 1 / d$ of the singular vectors.
- Traditional algorithms calculate all singular values and truncate.

Range finding algorithm

Find (approximate) dominant k left singular values of a $m \times n$ matrix M
Construct $n \times k$ Gaussian random matrix Ω
QR decomposition:

$$
Q R=M \Omega
$$

Q is an $n \times k$ matrix containing the dominant k (approximate) left singular vectors

- Cost is dominated by the matrix multiply $M \Omega$

Randomized SVD (RSVD)

Improving accuracy: oversampling

Randomized SVD

p is the oversampling parameter ($p=10$ is typical)
(1) Construct $\Omega, n \times(k+p)$ Gaussian random matrix
(2) $Q R$ decomposition: $Q R=M \Omega$ Q is $n \times(k+p)$
(3) Singular value decomposition $U D V^{\dagger}=Q^{\dagger} M$
(4) Keep the k largest singular values
(3) $Q U$ is a good approximation to the dominant k singular values

Oversampling does not increase cost - dominated by multiplication $M \Omega$ Very good theoretical error bounds with modest oversampling $p=10$ works OK.

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

First site

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Expand the bond dimension

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Optimize the site, then truncate

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Next site

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Expand the bond dimension

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Optimize the site, then truncate

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Next site

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Expand the bond dimension

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Optimize the site, then truncate

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Next site

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Expand the bond dimension

Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

- Bond expansion before the optimization step
- Incorporate degrees of freedom from the environment
- These degrees of freedom are 'thrown away' afterwards

Optimize the site, then truncate

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

First site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Optimize the site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Truncate/expand the bond

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Next site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Optimize the site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Truncate/expand the bond

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Next site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Optimize the site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Truncate/expand the bond

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Next site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Optimize the site

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Truncate/expand the bond

Pre-expansion versus post-expansion

3 S and related methods are post-expansion

- Bond expansion as part of the truncation step
- Introduce degrees of freedom unrelated to the optimization step
- Degrees of freedom added in the speculation that they may be useful later

Next site

Accelerating 2 -site DMRG (pre-expansion)

- Kohn, Tschirsich,Keck, Plenio, Tamascelli, Mongangero, Phys. Rev. E 97, 013301 (2018) doi:10.1103/PhysRevE.97.013301
2-site DMRG using RSVD, $\mathcal{O}\left(d^{2} D^{3}\right)$ no longer a bottleneck for large d
- Andreas Gleis, Jheng-Wei Li, and Jan von Delft, Phys. Rev. Lett. 130, 246402 (2023)
doi:10.1103/PhysRevLett.130.246402
2-site DMRG with single site cost, overall $\mathcal{O}\left(d w D^{3}\right)$, but a total of 5 SVD's

Basic idea:

- One iteration of 2-site DMRG, enlarge bond dimension by k
- Single-site DMRG in this $D+k$ dimensional basis

Overall cost for the optimization step is $\mathcal{O}\left(d w(D+k)^{3}\right)$

New work: use the RSVD instead axivi2403.00562

Accelerated 2-site DMRG

Simpler and faster contraction versus the method from Gleis et al

Contraction cost is $\mathcal{O}\left(d w k D^{2}\right)$. No $\mathcal{O}\left(D^{3}\right)$ operations.
(1) Construct $d D \times k$ Gaussian random matrix Ω
(2) Orthogonalize Ω against the states already in the environment basis
(3) Insert this into the 2 -site matrix-vector multiply
(4) $Q R$ decomposition $Q R=M \Omega$
(5) Q is $d D \times k$ matrix of the expansion vectors
(6) Augment the environment site and Hamiltonian

Pre-expansion variants

- Random - choose random expansion vectors
- Same distribution of quantum number sectors as the existing states
- Ensure at least one state in each available sector
- Range-finding - Use Q from $Q R=M \Omega$ as the expansion vectors
- RSVD - Oversample the range-finding algorithm and SVD of $Q^{\dagger} M$

Heisenberg spin chain example, $k=0.1 D$ pre-expansion

Post-expansion

Apply the RSVD ideas to the 3 S algorithm

- Partition the states into two classes
- D kept states
- k additional expansion vectors
- the MPS has $D+k$ states total
- Orthogonalize the expansion vectors against the kept states
- only need k singular vectors of the big matrix, rather than D (or $D+k$)

Accelerated 3S mixing

Contraction cost is $\mathcal{O}\left(d w k D^{2}\right)$
Weight the components Ω from the norm of the F matrices

Post-expansion

Physical picture: we don't know (or don't trust) the F matrix elements replace them with random numbers!

Post-expansion

Physical picture: we don't know (or don't trust) the F matrix elements replace them with random numbers!

Post-expansion variants

- Random - choose random expansion vectors
- Usually not effective - similar to single-site with no singular value cutoff
- Range-finding - Use Q from $Q R=M \Omega$ as the expansion vectors
- No control over quantum number sectors
- RSVD - Oversample the range-finding algorithm and SVD of $Q^{\dagger} M$
- Mixing - merge the expansion vectors with a mixing factor
- Set the mixing factor from the discarded weight of the truncation from $D+k$ to D - avoids the biggest problem of the old 3S algorithm

Benchmark - Hubbard-Hostein example

$$
H=-t \sum_{<i, j>, \sigma}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { H.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}+\omega \sum_{i} b_{i}^{\dagger} b_{i}+g \sum_{i}\left(n_{i \uparrow}+n_{i \downarrow}-1\right)\left(b_{i}^{\dagger}+b_{i}\right)
$$

Convergence is better than 3 S

Hubbard-Hostein example - CPU time

Conclusion

Two bond expansion methods for DMRG
Pre-expansion:

- Similar convergence as 2-site DMRG
- Same performance as single-site DMRG; linear in d
- Bond expansion is fast - effectively zero cost

Post-expansion:

- Similar to 3S, good for inhomogeneous or long-range interactions
- Converges better than 3S
- Bond expansion is asymptotically faster than 3S (zero cost)
- More details at arXiv:2403.00562
- Long paper in preparation

Code available: https://github.com/mptoolkit
Documentation: https://mptoolkit.qusim.net

