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Introduction: DMRG

General many-body quantum state as a tensor product of d-dimensional
local Hilbert spaces:

|Ψ〉 =
cs1···sN

s1 s2 s3
. . .

sN

, O(expN) DOFs.

Compress as a matrix product state:

|Ψ〉 =
As1

1 As2
2 As3

3

D ×D matrix

. . .

AsN
N

s1 s2 s3 sN

, O(ND2) DOFs.

Good at representing locally entangled states.
Accuracy controlled by D.
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Density Matrix Renormalization Group
See Schollwöck, Annals of Physics 326, 96 (2011) for a review
doi:10.1016/j.aop.2010.09.012

The ‘classic’ algorithm is 2-site DMRG: update two sites of the tensor
network at once.

One DMRG step: 2 sites, Dd× dD dimensional tensor

|Ψ〉 = H |Ψ〉 = E Fw

Cost of the tensor network contraction is O(wd2D3)

SVD to convert ψ back into MPS form:

|Ψ〉 = =

U D V †

Cost of the SVD is O(d3D3)
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Why not update a single site?

Much faster – O(wdD3) for the matrix-vector multiply

|Ψ〉 = H |Ψ〉 = E F

SVD is O(dD3)

=

UD V †

Linear scaling in the local Hilbert space dimension d
Problem: how to increase the bond dimension? (random states?)
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Single-site convergence

Heisenberg spin chain example – Néel state to D = 100
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Defaults
random singular vectors

U(1) random singular vectors

With U(1) symmetry, the dimension in each symmetry sector is frozen
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Single-site subspace expansion (3S)
C. Hubig, IPM, U. Schollwöck, and F. A. Wolf, Phys. Rev. B 91, 155115 (2015)
doi:10.1103/PhysRevB.91.155115

Incorporate new degrees of freedom during the truncation using the
environment Hamiltonian

d
w

D

D
=

d w

DD =

U DV †

(not used)

Cost of contraction is O(wdD3). Cost of SVD is O(wd2D3).

Earlier method from Steven R White that uses an eigenvalue
decomposition, O(d3D3) [Phys. Rev. B 72, 180403 (2005)]
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3S – why does it work?

Easier to understand as a density matrix

ρ′ =
∑
w

EwρE
†
w = XX† =

d dD D

Perturb the density matrix using the block operators
It is important to use appropriate weights
One block operator is the identity
The weight of the remaining components is the control parameter α
Weight each component by the norm Fw matrix
Omit the block Hamiltonian itself – don’t need it
The remaining set {Ew} contains all interaction terms that are
needed at the current site

They might not appear in the projected Hamiltonian itself!
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Adding relevant degrees of freedom

Long-range interactions
Example: periodic boundary conditions

Inhomogeneous degrees of freedom
Example: fermions coupled to bosonic degrees of freedom

H =−t
∑

<i,j>,σ

(
c
†
iσcjσ + H.c.

)
+ U

∑
i

ni↑ni↓ + ω
∑
i

b
†
i bi + g

∑
i

(
ni↑ + ni↓ − 1

) (
b
†
i + bi

)

2-site update cannot introduce new quantum number sectors
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Adding relevant degrees of freedom

Long-range interactions
Example: periodic boundary conditions

Relevant basis states at site 1 added via the mixing term
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Low rank factorization: randomized SVD (RSVD)
N. Halko, P.-G. Martinsson, and J. A. Tropp, SIAM Rev. 53, 217 (2011)
doi:10.1137/090771806

We only want a fraction ∼ 1/d of the singular vectors.
Traditional algorithms calculate all singular values and truncate.

Range finding algorithm
Find (approximate) dominant k left singular values of am×n matrixM

Construct n× k Gaussian random matrix Ω

QR decomposition:
QR =MΩ

Q is an n× k matrix containing the dominant k (approximate) left
singular vectors

Cost is dominated by the matrix multiplyMΩ
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Randomized SVD (RSVD)

Improving accuracy: oversampling

Randomized SVD
p is the oversampling parameter (p = 10 is typical)

1 Construct Ω, n× (k + p) Gaussian random matrix
2 QR decomposition: QR =MΩ Q is n× (k + p)

3 Singular value decomposition UDV † = Q†M

4 Keep the k largest singular values U is (k + p)× k

5 QU is a good approximation to the dominant k singular values

Oversampling does not increase cost – dominated by multiplicationMΩ
Very good theoretical error bounds with modest oversampling
p = 10 works OK.

Ian McCulloch/Jesse Osborne Environment Expansion 2024-03-25 11 / 21



Pre-expansion versus post-expansion

We refer to two-site DMRG and related methods as pre-expansion

Bond expansion before the optimization step
Incorporate degrees of freedom from the environment
These degrees of freedom are ‘thrown away’ afterwards

First site
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Pre-expansion versus post-expansion

3S and related methods are post-expansion

Bond expansion as part of the truncation step
Introduce degrees of freedom unrelated to the optimization step
Degrees of freedom added in the speculation that they may be
useful later

First site
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Accelerating 2-site DMRG (pre-expansion)

Kohn, Tschirsich,Keck, Plenio, Tamascelli, Mongangero, Phys. Rev. E 97, 013301 (2018)

doi:10.1103/PhysRevE.97.013301

2-site DMRG using RSVD, O(d2D3) no longer a bottleneck for large
d

Andreas Gleis, Jheng-Wei Li, and Jan von Delft, Phys. Rev. Lett. 130, 246402 (2023)

doi:10.1103/PhysRevLett.130.246402

2-site DMRG with single site cost, overall O(dwD3), but a total of 5
SVD’s

Basic idea:
One iteration of 2-site DMRG, enlarge bond dimension by k
Single-site DMRG in this D + k dimensional basis

Overall cost for the optimization step is O(dw(D + k)3)
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New work: use the RSVD instead arxiv:2403.00562

Accelerated 2-site DMRG
Simpler and faster contraction versus the method from Gleis et al

MΩ = E

Ω

F

k

Contraction cost is O(dwkD2). No O(D3) operations.

1 Construct dD × k Gaussian random matrix Ω

2 Orthogonalize Ω against the states already in the environment basis
3 Insert this into the 2-site matrix-vector multiply
4 QR decomposition QR =MΩ

5 Q is dD × k matrix of the expansion vectors
6 Augment the environment site and Hamiltonian
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Pre-expansion variants
Random – choose random expansion vectors

Same distribution of quantum number sectors as the existing states
Ensure at least one state in each available sector

Range-finding – Use Q from QR =MΩ as the expansion vectors
RSVD – Oversample the range-finding algorithm and SVD of Q†M

Heisenberg spin chain example, k = 0.1D pre-expansion
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random singular vectors
U(1) random singular vectors

U(1) random vector pre-expansion
U(1) range-finding pre-expansion

U(1) RSVD pre-expansion
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Post-expansion
Apply the RSVD ideas to the 3S algorithm

Partition the states into two classes
D kept states
k additional expansion vectors
the MPS has D + k states total

Orthogonalize the expansion vectors against the kept states
only need k singular vectors of the big matrix, rather than D (or
D + k)

Accelerated 3S mixing

MΩ = E Ω

k

Contraction cost is O(dwkD2)
Weight the components Ω from the norm of the F matrices
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Post-expansion

MΩ = E Ω

k

Physical picture: we don’t know (or don’t trust) the F matrix elements –
replace them with random numbers!

Post-expansion variants
Random – choose random expansion vectors

Usually not effective – similar to single-site with no singular value
cutoff

Range-finding – Use Q from QR =MΩ as the expansion vectors
No control over quantum number sectors

RSVD – Oversample the range-finding algorithm and SVD of Q†M

Mixing – merge the expansion vectors with a mixing factor
Set the mixing factor from the discarded weight of the truncation
from D+ k to D – avoids the biggest problem of the old 3S algorithm
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Benchmark – Hubbard-Hostein example
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Convergence is better than 3S
Ian McCulloch/Jesse Osborne Environment Expansion 2024-03-25 19 / 21



Hubbard-Hostein example – CPU time
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Conclusion

Two bond expansion methods for DMRG
Pre-expansion:

Similar convergence as 2-site DMRG
Same performance as single-site DMRG; linear in d
Bond expansion is fast – effectively zero cost

Post-expansion:
Similar to 3S, good for inhomogeneous or long-range interactions
Converges better than 3S
Bond expansion is asymptotically faster than 3S (zero cost)

More details at arXiv:2403.00562
Long paper in preparation

Code available: https://github.com/mptoolkit
Documentation: https://mptoolkit.qusim.net
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